On the Interaction of Upwinding and Forcing for Nonlinear Hyperbolic Systems of Conservation Laws

نویسندگان

  • Jean-Michel Ghidaglia
  • Marc Tajchman
چکیده

Numerical stability of discretization schemes for nonlinear hyperbolic systems is obtained most currently via upwinding. In this paper we aim to report on the interaction of upwinding and forcing terms. It turns out that, for a given scheme, one must discretize properly in space the forcing terms in order to maintain the accuracy. As a matter of fact, when one uses an upwind method to discretize the derivative terms, one has to use also an upwind discretization of sources terms. In this paper we derive the proper formulas for discretizing the source terms and show their eeciency. From the computational point of view this is done with almost no extra cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-similar solutions‎ ‎of the Riemann problem for two-dimensional systems of conservation‎ ‎laws

In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

A total variation diminishing high resolution scheme for nonlinear conservation laws

In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...

متن کامل

Krylov-Riemann Solver for Large Hyperbolic Systems of Conservation Laws

This paper presents a Riemann solver for nonlinear hyperbolic systems of conservation laws based on a Krylov subspace approximation of the upwinding dissipation vector. In the general case, the solver does not require any detailed information of the eigensystem, except an estimate of the global maximal propagation speed. It uses successive flux function evaluations to obtain a numerical flux wh...

متن کامل

On Black-Scholes equation; method of Heir-equations‎, ‎nonlinear self-adjointness and conservation laws

In this paper, Heir-equations method is applied to investigate nonclassical symmetries and new solutions of the Black-Scholes equation. Nonlinear self-adjointness is proved and infinite number of conservation laws are computed by a new conservation laws theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007